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VIBRATION AND STABILITY ANALYSIS OF
COMPRESSED ROCKET VEHICLES

SUMMARY

Because rocket vehicles are exposed to large axial loads caused by the thrust and
the inertia forces of the vehicle masses, the stability problem is important. Problems
of this kind are nonconservative. To ensure proper calculation of the critical load the
dynamic stability criterion must be applied. Such calculation requires performance of
a vibration analysis of the loaded system. The analysis developed in this report is a
transfer-matrix method based on ordinary and Timoshenko's beam theory. To simplify
the procedure the vehicle was modeled by a lumped-mass system and was assumed to be
longitudinally rigid. For convenience, damping was neglected. Of course, damping may
play an important role in reducing the critical load imposed. For this reason, damping
should be the subject of additional studies. To study the influence of mass and stiffness
distribution the analysis has been applied to several characteristic cases., Finally, a
Saturn V three-stage vehicle has been investigated. However important the stability
problem may be for highly accelerated missiles, this analysis indicates that for modern
launch vehicles the acceleration is far removed from critical values,

SECTION 1. INTRODUCTION

During powered flight, rocket vehicles are heavily loaded by thrust and inertia
forces of the vehicle masses; these loads produce large axial forces. For this reason,
the problem of stability is significant.

To determine the critical load of any loaded elastic system, generally three
stability criteria are available (Ref. 1).

i. The Dynamic Criterion:

The critical load is the smallest load which when unbalanced by a sufficient
disturbance causes a significant departure from the equilibrium position.

2. The Static (Euler) Criterion:

The critical load is the smallest load under which a nontrivial equilibrium
position exists,



3. The Energy Criterion:

The critical load is the smallest load under which the total potential energy of
the system is no longer positive definite,

The Dynamic Criterion follows directly from the definition of a stable equilibrium:

If a small disturbance applied on a system results in small vibrations about the
equilibrium position, the position is called stable.

As shown in Reference 1, the Dynamic Criterion is the most general of the three,
To obtain the Critical Load of any system, this first criterion may be applied; while the
application of the second or third criterion to so~called nonconservative systems may re-
sult in failure. The classification into conservative and nonconservative systems is bhased
on the nature of the loads. An elastic system may lose its conservative character since
the external loads cannot be derived {rom a stationary unique potential. In Reference 1
it is shown that, for instance, a cantilever beam with a load of constant amount acting in
the tangent of its free end represents such a nonconservative system,

To apply the Dynamic Criterion to the case under consideration, system and
equilibrium position must be defined. The loaded system consists of the vehicle and the
thrust vector of constant value acting at all times in the vehicle end tangent. To explain
the equilibrium position the vehicle may be referred to a body-fixed system of coordinates
whose x-axis coincides with the undisturbed vehicle axis. If there is no external dis-
turbance, the vehicle accelerated by the thrust moves straight ahead in the direction of
the thrust. All the acting forces, namely the thrust and the inertia forces, lie in the long
axis of the body. Hence, no lateral deformation, no motion of the vehicle masses relative
to the body-fixed, moving coordinate system will occur, This is the (trivial) equilibrium
position, Yet, a sufficiently small disturbance will cause small lateral oscillations about
this position. (Longitudinal and torsional oscillations will not be considered here, )

For the same reason as in the above-mentioned case of a cantilever beam with a
constant tangential load on its free end (Ref. 1), the problem under consideration is also
a nonconservative one. To ensure proper solutions the Dynamic Criterion should be

applied.

From the definition of stable equilibrium, application of the Dynamic Criterion
implies a vibration analysis of the loaded system. To apply the criterion one must find
the smallest load which separates the domain of stability from that of instability. The
latter domain is characterized by amplitudes increasing with time but without limit, )

«) The vibration analysis considered is based on linear theory; its validity is therefore
restricted to small vibrations,
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As explained in Reference 1, two possibilities exist for cross-over from one domain to

the other. Either the crossing point means a nontrivial equilibrium position (Euler's
static case) or the instability domain will be reached without occupying such a position at
any smaller load, This is the dynamic case. In the first case, all three criteria are ap-
plicable; in the second case, only the first is applicable. All conservative problems be-
long to the first group; but nonconservative problems may belong to the first or second
group. Since some special considerations (Ref. 2) are essential for recognition of the
behavior of nonconservative systems, application of the first (dynamic) criterion is recom-
mended in all cases.

The above-mentioned vibration analysis of a loaded system consists in the solution
of a eigenvalue problem. For any given load, eigenvalues

A..; i: 1, 2, 3, ce e

i
must be determin_ed which assure solutions of the problem. Each eigenvalue yields a
solution representing a mode of vibration of the system. The frequencies of these vibra-
tions are given by

1
1 1 2T

It is well known that instability is caused by complex frequencies. By plotting
eigenvalues or frequencies versus load one recognizes rather easily the character of a
stability problem. Considering the case in question, the independent variable may be
the thrust force T--or better--the acceleration of the center of gravity:

_ T
YT M

a
where M, is the total vehicle mass. Plotting of the frequencies may start at @ = 0 with
the positive frequencies of the unloaded vehicle, The variations of the frequencies (as «
increases) lead to frequency curves which may show one or both of the following two

characteristics: coalescence of adjacent frequencies or junction with the x-axis. The
first case yields a double frequency f at a certain oy (Fig. 1) and obviously if

@ >a
two of the natural frequencies are conjugate complexes. Hence, this case characterizes
a dynamic instability while in the second case (Fig, 2) the junction at o = a g with the
x~axis means f = 0 and hence, characterizes the Euler--or static instability (nontrivial
equilibrium position). Finally, the analysis results in the critical acceleration

a =min, (o, @g)

crit,



A trocket vehicle has, in general, highly nonuniform mass and stiffness distribue
tions., A rocket vehicle must be modeled by an adequate lumped-parameter system that
represents as closely as possible the dynamic behavior of the actual structure. Generally,
a lumped-mass system will be used. A lumped-mass system has discrete mass points
located on the axis of a massless beam having constant stiffness between successive mass
points (Fig, 11a). The analysis presented in this report is restricted to such systems;
however, extensions to more accurate models are possible without difficulties.

The developed vibration analysis is a transfer-matrix method. Its derivation
based on ordinary and Timoshenko's beam theory is presented in Sections IV and V. Be-
cause of the mathematical difficulties involved in taking into account a physically reason-
able damping assumption, no damping is considered in this analysis. Application of the
analysis (Section III) indicates that modern launch vehicles are sufficiently stiff to keep
their acceleration of 5 to 6 g's distant from critical values. At most, it may be of some
interest to know the frequency variation within this low g-interval, However, as proved
in Reference 1, damping plays an important role in the stability of nonconservative sys-

"tems (see also Reference 3). Damping may reduce the critical load considerably. Hence,
this analysis should be considered as a first step only. Inclusion of damping is suggested

f01_‘ further studies.

The external forces acting on the system masses are the inertia forces of the
vehicle motion., Because of the vehicle rotation and deformation, these forces are, in
general, of a complicated nature. These forces contain components originating from
centrifugal, Coriolis, and other accelerations. As shown in the Appendix, several of
these components may be neglected under the restriction to small distortions.

SECTION II. SIMPLE LUMPED MASS SYSTEMS

As mentioned before, rocket vehicles during powered flight are loaded by thrust
and the inertia forces of the vehicle masses. Therefore, in addition to the stiffness, the
mass distribution is a determining factor of the stability., This is valid,in general,ifor
nonconservative systems, In Reference 1 the following statement is proved:

"In nonconservative systems, under otherwise equal conditions, the critical load
depends highly on the mass distribution. "

At first, simple lumped-mass systems may serve for studying the influence of
mass and stiffness distributions. The investigation of four typical cases are presented
below, Mass and stiffness data of these cases are taken as averages from the Saturn V
three-stage launch vehicle of Section III.

i, Equal, equidistant mass points on a uniformly stiff beam.

Figure 3 shows distribution of mass and stiffness as well as the acceleration-
frequency plot of a five-mass system., Ordinary and Timoshenko's beam theory are applied,

4
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The plot shows that no nontrivial equilibrium position exists. The critical acceleration
Qorit, 18 approximately 43.2g! for the ordinary beam and 34. 4g for the Timoshenko beam.
Mode shape and frequencies at ¢ = 0 and a = 43.1g (ordinary beam case) are shown by
Figure 4. At o = 43.1 g:the differences between the two first frequencies and mode shapes
are already quite small.

Better distribution of the total beam mass will increase the critical acceleration,
Figure 5 shows these critical values of the same uniformly stiff beam having 5, 7, 8, 9,
11, 14, 15, 17, 19, 20, 21, equal, equidistant point masses of the same total amount.
Apparently, these values approach the critical acceleration of the uniform beam asymptoti-
cally.

2. Top-heavy five-mass system.

Figure 6 shows the acceleration-frequency plot of a five~-mass system having
the same stiffness as that represented by Figure 3. Also, the stations carry the same
amount of mass and mass moment of inertia--but distances between stations have changed.
Instead of 4 equal distances 1 between the point masses, there are now the distances
.51, .751,'1.25 1, 1.50 1,

The a-f plot now shows dynamic and static instabilities. The critical accelerations
are Qgorpit, = 22.07g and acrit, = 19.06g for the ordinary and Timoshenko beam cases
respectively. These accelerations are now determined by static (Euler's) instabilities.
Figure 7 shows the nontrivial equilibrium position of both cases.

3. Tail-heavy five-mass system.

As shown by Figure 8 this system is that of Figure 6, but reoriented by 180°.
The a-f plot shows in general,the same behavior as in case 2, The critical accelerations,
however, of both cases (ordinary and Timoshenko beam) are higher,

4, Tail-heavy and tail-stiff five-mass system.

Mass and stiffness data of this system (Fig. 9) show already the character-
istics of rocket vehicles, Static and dynamic instabilities are clear from the a-f plot;
however, the critical loads of both cases (ordinary and Timoshenko beam) are determined
by dynamic instabilities. It is noticeable that these instabilities arise from coalescence
of the second and third frequencies.

SECTION III, SATURN V THREE-STAGE VEHICLE

Mass and stiffness data of the Saturn V three-stage vehicle are given in Table 1.
Figure 10 shows the a-f plots for the ordinary and Timoshenko beam case. As in the



case II 4, the f; curves cross the a-axis while the f, and f3 curves coalesce. In the
Timoshenko beam case the critical acceleration is dynamic in nature; it is determined by
the coalescence of f; and f5. In the ordinary beam case the accelerations of both instabili-
ties are nearly equal.

As already mentioned in Section I, the acceleration of the Saturn V vehicle will
not reach 7g. For this reason, the a-f plot is highly theoretical. Of some interest,
however, is the variation of frequencies in this low g-range. Table 2 shows the first
three frequencies for @ = g, 2g, ...8g. It can be seen that these variations are very
small,

There is another interesting fact. Nonconservative vibration problems belong to
the nonselfadjoint eigenvalue problems. As is well known, the eigenfunctions of such
eigenvalue problems do not satisfy the orthogonality relations. For lumped-mass sys-
tems having n stations, these relations are given by

n
Z miyjiyki =0 (ordinary beam case)
i=1

ji*k
n
Z (miyjiyki + P Gjieki) =0 (Timoshenko beam case)

i=

where the columns

(ordinary beam)




(Timoshenko beam)

;
[

t
are the j h eigenvectors, while

m P. i=1’2.-c¢ln

i’ i
are mass and mass moment of inertia respectively at the station i.

If « = og = 0 the orthogonality relations are exactly satisfied. As « increases,
deviations from zero are generated. For the case under discussion Table 3 shows these
deviations of the three lowest modes. The values in the first row (@ = 0) represent
calculation errors.

SECTION IV, TRANSFER MATRIX
METHOD BASED ON ORDINARY BEAM THEORY

Figure 11a shows a rocket vehicle simplified to a lumped-mass system which is
referred to a body-fixed system of coordinates (x, y, z) with x positive to the right. The
vehicle axis coincides with the x-axis, mass point 1 at the origin. On the right end of
the vehicle the thrust T acts in the negative x-direction,

If only the force T is acting (no gravitational forces) the vehicle moves with ac-
celerated, straight-line motion in the direction of the negative x. T and the inertia forces
of the beam masses constitute a system of equilibrium, and since all forces act in the
vehicle axis, no relative motion between the vehicle masses occurs. This is the equili-
brium state. A sufficient small disturbance at t = 0 causes small oscillations of the mass
points about the x-axis., The plane of oscillation is assumed to coincide with the x, y
plane of the body-fixed system.



Figure 11b shows the system at a time t # 0. Only the ith mass point is sketched.
Its coordinates are xj, yj =y (Xi, t), its mass mj. The postulates that the axis is fixed
in the body (the center of mass of the system remains on the x-axis) and that there is no
rotation of the system about an axis perpendicular to the xy-plane, may be expressed by

n
L, myy;= 0
i=
(2)
n
2, m; x3y; =0
i=1
.th .
att # 0, the i mass is attacked by the forces:
_miyl i= 1, 2’... n >{<) (3)
Hi, Vi i=1, 2, eee n (4)
(3) represents the inertia forces of the oscillatory motion while the forces (4) are

the inertia forces caused by the accelerated motion of the vehicle, The forces (4), there-
fore, have to satisfy the following equilibrium conditions.

n N

1:

n

'Zi Vi:Tyﬁ f (5)
1:

n

Y, Vi (L-x) -H1<Yn-yi)1=0J

i=1

%) Here and on the succeeding pages, the notations

e _ 8%_[ (x1) . , 9y (x1)

¥, (8 = 5 s oyj(p = D
X = Xj X =X
T=t T=t

will be used,

8



Using the notations:

n x-coordinate of the C. M.

a S
m .

a acceleration vector of the C. M.
n2

) angle acceleration about the C. M, -

the forces (4) are given by
Hi = -m, a_.,,’1
Vi=-mj [ap +@ (%1 - 1.

A derivation of equations (7) in detail is given in the Appendix.

may be concluded N
1
my _
Ma a =-T y' L
n2 n

where
n.
— 2 2
IS— Z Xj mjy-n7 Ma
i=1
From equations (8) it follows
Ny
a - l = =
™ Ma
3.772 =~y >

————

(6)

(7)

From Figure 11b, it

(8)

(9)



where

IS

2_ 8

Y
a

Insertion of the expression (9) into equations (7) yields:

1
V. = ~am, {-yh+7z vy - (L-m) vl (x;- )

Now it is easy to see that H;, Vj satisfy equations (5).
Using the notations:

my
Big=- (x3=-1) 7z

m,

By = [P+ (L-n) (xi-n] =%

the second equation (11) may be written as follows:

The distortions ¥i» y'i (i=1, 2. .. n) are exposed to the same time law

cos (8t + ¢)

(10)

(11)

(12)

(13)

(14)

As usual, this time factor will be cancelled. Because no misconception is expected, the

used notations may be retained. Then in Figures 11b and 12a 'y has to be replaced by

where A = Q2

Then, from Figure 12a and equation (13) the following equilibrium conditions may be

concluded

10
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MF* = M,
1 1

(16)

Qi* =-Am;y; +Qi -G Bi3yn - a By, Y;l-
The state in a certain point of the beam is known if the distortions, and also
internal and external forces acting in this point, are given. Hence, to describe the state,
deflection, and slope, moment and shear are necessary for that purpose. Since the shear
force depends on y, and y} (see eq. 13) these two quantities must be added to the four
others mentioned before. These six quantities may be written as the state vector. On

the left side of the it mass this vector is

v o= (17)

As equations (16) show, the two state vectors are linearly related by

— % =
Y, =Ty (18)

11

| N
r



where 7I‘—i is the following matrix

1 0 0 0 0 0
0 1 0 0 0 0
_ 0 0 1 0 0 0
T; = (19)
-Am; 0 0 1 -aBi, -aBj,
0 0 0 0 1 0
0 0 0 0 0 1

Sometimes ¥i is called inertia matrix.

An analogous relation exists between the state vectors Y41 and yi*: (Fig. 12b)

Yiss = S; Vi (20)

where §i is the stiffness matrix., To determine §i it is necessary at first to solve the
differential equation

M
"o
y EL (21)

with the boundary conditions (see Fig. 12b)

E=0; y=yi ¥V =V (22)

where I; is the (constant) cross-sectional moment of inertia between stations i and i + 1,
E is Young's modulus of elasticity and

£E=X-Xx, (23)

M is a function of ¢, from Figure 12b it can be seen that

M (g) = M + £ Q" + (¥ - yy) Ny (24)

and Ni*=Ni+Hi=Ni+am (25)

i.

12



The latter relation follows from the first equation (11).
Insertion of equation (24) into equation (21) yields
g, o (e )
y"+f£‘3’=-fir T - Yi
with the abbreviation
N 1}

p? = .
i EIi

The general solution of the differential equation (26) is:

Ayt Bt Mx+:Qf
y=AcosT+Bsin - N>ik + Y3
i i

Proof by insertion. Derivation of equation (28) with respect to ¢ gives

B. B £ B. Bt Q¥

i i i i i

* - — in — — =
y I A sin L. + L. B cos 1 N*
i 1 1 i i

Using the boundary conditions (22) it follows from equations (28) and (29)

M*
L
T N
1

' *

B=1—i— y! +Ql

By i NF

Setting X=X, One obtains from equations (28), (29), (30), and (31)

sin B. cos Bi -1 ,
= ' _— o
Vi =Y 7F B, Ly + NF M,
1, sin B.
1 1 - s
TNx O\ B . 1> QY
1 1

(26)

(27)

(28)

(29)

(30)

(31)

(32)

13



1 = ! - —_ A - - x
Vi Vi Bi - Tg w M T rE 9

With the notations:

\
sinﬁi
'Bi 1i = 61 ; cos Bi=cr.
Gt oo %
N * i ’ EI, i 1
1 1
5, -1,
i 1 - s(Q . (@ _ 5 (M)
Ni* i ’ i i
/

equations (32) and (33) go over in

_ ' (M) % (Q) ~ x*
yi_|_1 =yt 6i yi + 6i Mi + 61 Qi
v . (M) ooy (Q) %
Vigr = 033t 0op  MF oy U Q.

From equation (24) it follows for ¢ =1;

- _N* * * % o
My = N7y + M7 +L QP + N7y,

Now, replacement of Vit by equation (35) and application of equation (34) yields
- ke 1 ok %k
M, = NFo;yi+o; M +06;Q

i+

where 6i and o are given by equations (34).

14
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(35)

(36)

(37)



Finally, as shown by Figure 12b

Qu, = (38)

i+t
The equations (35), (36), (37), and (38), and in addition two identities for Y and y{l
form the linear system (20) whose matrix 8, is given by

1 5. s (M 5@ 0]
1 1 1
0 g. o.(M) G.(Q) 0 0
1 1 1
0 N* &, o, 5. 0 0
1 1 1 1
Si= 1o 0 0 1 0 0 (39)
0 0 0 0 1 0
0 0 0 0 0 1

_>:< - -
N LY, (40)
where
L= (y) =T S _ T, . .S Ty (41)
and
EN £
v vi
M* M,
=% _ n = _
Yn T | & Vi = (42)
Q Q4
1 1
[7n i

15



It is well known that the boundary conditions may be inserted into these vectors.

The left end is free, therefore
Mi = 0
Q1 =0

while on the right side, the conditions are

M* =0
n

*  _
Q =-Ty

(43)

(44)

Determination of MI;*‘ and Q: by the external loads (3) and (4) changes equations

(44) into

n
i_zi (Am,y, +V) (L-x) -H (y -y) =0

n
—_ 1
121 Am y, +V) = Ty

Now, application of equations (5) converts equations (45) into

and r

n
), Amyy, = 0
i=1

J

Without regard to the factor A these two equations, however, are the equations (2).

(45)

(46)

Hence, it follows, realization of the conditions (44) ensures that the coordinate system

used is body-fixed.

Equations (40), (41), and (42) with the boundary conditions (43) and (44) result

in a linear homogeneous system of equations for the unknowns
Yi; Yis Yns Yn

16



which may be written as follows:

Lyyy+lpgyi+ (5= 1) v +1i Y]'[1 =0

Ipg vy + loayg + los yn + (13 - 1) Y;l =0

> (47)
lsg vy + a2 yi + a5y 136y, = O

\
lyyi+lpyi+lsy, + g+ Dy =0

This system is solvable only if

44 149 Lg-1 lg

loy lys los lyg- 1

131 132 135 136

A A A

1y lp g L + @ My
A A A A

A is a polynomial of A with coefficients depending on . If Ak is a root of A = 0 then

is a natural frequency of the vibrating system. Insertion of A into (47) yields a solution
of these equations:

_— - ! - - '
Ykl =1 > yki: Ykna Ykn
Now in view of (43), the state vector §1 is known., To obtain the kth mode shape

ykﬂ

y = 1. (49)

17



M has to be inserted in (19) and then the operations (18) and (20), step-by-step applied.
This procedure yields all the state vectors whose first components form the above mode
shape. Finally multiplication of (49) by

i

Z

2
m. yi.
i
iz ki

gives the normalized kth mode shape.

SECTION V. EXTENSION OF THE TRANSFER-
MATRIX METHOD TO TIMOSHENKO BEAMS

The transfer-matrix method based on Timoshenko's beam theory is characteris-
tically analogous to the method based on ordinary beam theory. For these reasons, only
the changes are discussed in the following pages; while in general, reference is made to
the procedure outlined in Section IV.

Timoshenko's theory includes the effects of rotatory inertia and transverse shear
deformation on beam bending. This means, on the one hand, the inclusion of external
moments caused by the rotatory inertia of the beam masses; on the other hand, it means
that the beam deformation is now governed by two coupled differential equations--not one--

as in the ordinary beam case.

Considering the lumped-mass system of Figures 11b and 12, the mentioned ex-
ternal moments are

—Piei; Ri; i=1,2,...n (50)
where
ei, Pi are rotation angle and mass moment of inertia at station i,
R, is the external moment contribution at station i caused by the accelerated
beam rotation about its center of gravity.
Hence
R;=-& P, (51)

where @ is defined by the third equation (9).

18
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The forces (50) act in addition to the external forces (3) and (4).

The equations governing the beam deformation are

GA_.(y'-6) =Q+N#¢ *)
si .
i=1,2...n X
(52)
M
gt = - —
EYL
where
Asi is the constant shear area between stations i and i + 1,
G is the shear modulus of elasticity,

0 (x, t) is the rotation angle of the beam element,
Q, M, N are the internal forces of the beam.

The term N6 of the first equation represents the component of the longitudinal force which
contributes to the shear deformation (Fig., 13).

Changeover from Timoshenko's theory to the ordinary beam theory will be
arranged by

Because of the included rotatory inertia effect, 6.(t) = 9(Xit) is now equally en-
titled to Ve Hence, it is convenient to describe the state using Gi instead of yi. However,
the two quantities are related by the first equation (52),

Notice y' = ay(xt) | 0! _ 06(xt)

19



The state vectors before and after station i (Fig. 12a) are:

EA Ef
0. 0.

i i
M, M,

i i

yl = Q- ’ yi"~ = Q* (53)

i i
Yn Yn

] 1]
Yn Y,
b, e

Since it is assumed that the thrust is, at all times, perpendicular to the end cross
section of the beam, no shear deformation at this point can occur. Thus, from the first
equation (52) it follows:

y. =6 (54)

Hence, in the state vectors (53), yI':l may be replaced by Qn.

h
The kt mode shape is determined by

20



&

The normalization factor is given by

i

n
2
L (my + Py
i=1

The conditions analogous
are now

62 )

ki

(2) to keep the coordinate system at all times body-fixed

W
n
(59)
n >
+ =
izi (m; x, ¥, + P, 6) 0
while the conditions, analogous to (5) are given by N
n
), H =T
i=1
n ? (56)
), V. =To
i=1
n
L IV (L-x) -R; - H; (v, -y)] = 0
i=1 )

Under consideration of the third equation (9) and equation (54) the external
moment (51) may be expressed by

P

i
Ry=-o 32 ¥y~ (L=m) oyl

sk
where @, 1, n, Lare defined by (6) equations (9), (10), ) and Figure 1iia,

%) Note:
n
_ 2 _
I, = %1 (xI M, + P)

7 M,
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Setting

Py
By =~
57)
Py (
By, = 2 (L-m)
Ri may be presented as follows:
R, = oz,Biiyn+oz,8i2 en (58)

Now y and 0 may be replaced by -Ay; and -Af8i where A is defined by equatlons
(14) and (15) Then from Figure 12a, equatlons (3), (13), (51), and (58),
equilibrium conditions may be concluded as

M. = APiGi+Mi+a ,Biiyn+oz,5‘i2 On
(59)

sk —— _ _
Q =-Amy, +Q-a By -aB, 0,

From (53) and equations (59) the inertia matrix, which is defined by equation
(18), follows as

F_i 0 0 0 0 0
0 1 0 0 0 0
0 AP 1 0
— @ Bli “ ’812
Ti = (60)
-Amy 0 0 1 -Q ,813 -a f
0 0 0 0 1 0
| 0 0 0 0 0 1 ]

To determine the stiffness matrix S, which is defined by equation (20) the linear
system of differential equations (52) with tﬁe boundary conditions

g=x—xi=0;y=yi;9=9i (61)

shall be solved,
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From Figure 12b and the first equation (11) it can be seen that
\

— LS - - %k
M=M*+¢QF +(y-y) N
Q =Qi=’.< L (62)

N =N* =N, +am,
: i i i

-~

Elimination of g from equations (52) and from the boundary conditions (61)*)
as also application of equations (62) gives:

B2 B: [M* + QX
y"_‘___]-_y:__l _I_—L_y (63)
112 L/ Ni* i

with the boundary conditions:

AT
= . = . 1 =
E=0y=ypy 1+GA.)91+GA. (64)
S1 Sl
where
Ni* 1§ N;
B = B 1+ Ga (65)
i si

The differential equation (63) has the same shape as equation (26)., Hence, the
solution y and its derivative y' are given formally by equations (28) and (29). Also the
integration constant A which follows from the first boundary condition (64) is given by
equation (30). However, equation (29) and the second boundary condition (64) resulf in

e

1 N;” Q"
B = — + o+ 66
5. \'* G 0; * NF (66)
i si i
%) Where the time factor is already removed.
23



Setting £ = x;,, = %; = 1i from equations (28), (29), (30), (52), (65), and (66) one

obtains finally

N* sin B, cos 8. -~1
—y. o+ |1+ — 1.6, + ——— M
Ying = Vi GA g. i'i N, i
si i i
(67)
. 11 1 Ni* sin ‘61 1 5
N* *Ga s e
si i
and
sing; L w  COSBj- 1 -
91+1 = 9i cos Bi - Bi EL, Mi + —-N—l*—— Qi (68)
With the notations: ]
%
1+ N ) s 8 =
GA . B. i i ’ cos B; = 0
si i
g -1 -~ 0, L
i _ (M) | 1 _ (M)
TNF =06 N % (69)
1 {+——) EI
GA . i
5, - 1. st
it I (~) s(M_ (@
ES - : ’ . = .
Ni i i i J
equations (67) and (68) go over in
- (M) % (Q) A x
and
6i+1 = 0;0; +0; Mi + 05 Qi (71)
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The equations concerning moment and shear may be obtained by the first

two equations (62) setting ¢ = Xiyg ~ X1 = L

* x -vy:) NX¥
i - Mi TLQT Yy -tV N

(72)

tt

QX

i+ 1

Q

Now, replacement of Vit = Vi by equation (70) and application of equations (69) yields:

= %* 3
Mi+1 = Ni* 61 Gi + O'iMi + 61 Ql (73)

where Ni* , 6j, 0y are given by the third equation (62) and equations (69) respectively.

Equations (70), (71), (72), and (73), and two identities for y, and 6,, form a

linear system whose matrix is the stiffness matrix Sj as defined by eﬁuation 320) .5
agrees formally with the matrix (39), however, its elements 64, 61( ) » 04 s Ois

cri( M) , O’i(Q) are now given by equations (65) and (69).
The following considerations are the same as those in the ordinary beam case.

Application of the boundary conditions leads to the eigen-frequency determinant, and
finally, to the determination of the mode shapes.
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FIGURE 1. COALESCENCE OF TWO ADJACENT
FREQUENCIES CHARACTERIZES A
DYNAMIC INSTABILITY

-
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FIGURE 2. JUNCTION OF THE LOAD AXIS
CHARACTERIZES A STATIC
(EULER'S) INSTABILITY
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TABLE 1 SATURN YV 3 STAGE LAUNCH VEHICLE; MASS AND STIFFNESS DATA

ST| 1; IN. | LBIN'SECEP: LBINSECP|T:x ITOIN4| A IN2

l _ 20.537 | 259 | . b |
89 ) o ) . .lO 7 1-5‘.

i 72.179 1554 | : . _
170 I - w30l 50
1 en.9u1 Y VY ]
S A I R VA 1.0
65.635 . .. 2,088 o L
w6 | o _ . 4.00 36.5
11952 | 33 412 I D L
158 _ _ - . 6.50 .. 38.5
. 86.618 . 65788 | B
235 | 1T 11,50 | 7 8.0
o © 332,580 A lA;OA.@é“_ ) _ 7 o _f _
a3 Vo . 23.25 | 8b.5
24,119 145 045 _

132

_124.549 221193
203.5 i b 50,00l  127.5
| 361,208 B V-0V S . o
_335.5) 1 1 s50.00 | 127.5
I 1791.633 | 468 287 L R o
18, | I b sheoo | 1375
|2 , 345.742 233 806 R T

123 _ N B N 54,001 137.,5
{3 _ 57.605 ;193 33

140 ; - -
4] 1866.523 375152 V 1 7
2LL.5 I 69.50 {  177.5
15 3297.779 | 591575 o
2415 ) N o A 203.0
16 ’ 2682.730 615 40k o R
310 _ _ , _53.00 | 135.0
17 1938.913 | 546 767 | N ]
237 {1 6500  166.0
|8 1538.302 3,0 078 | _
85 . I DR
9] - 512.671 376857 |
180 107.00 o
20 3L1.764 8383 | |

W] oo N Oy [ > kol o
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TABLE 2 SATURN V 3 STAGE VEHICLE; THE FIRST THREE FREQUENCIES

=X g fi fp fz  sgc”!
&  |ORDINARY BEAM|TIMOSHENKO BM.
1.248 e 1.170
0 257 | 2.213
| k502 3.484
1,245 1.166
| - 2.568 2,206
B B AL 3,477
L2 | 1,162
2 2,563 | 2,199
| 4488 1 3.70
o 1l.239 1.158
3 _ 2.558 L 2.92
ol s.w82 ] 3,463
1.236 N 17
4 2,553 | 2.186
- | 476 ] 3.456
| 1.234 1 1.150
S 2.548 | 2079
L L.u69 3.4L9
L1233 ] 1.146
& | 2.5.3 | 2.a72
o na63 I B
o l.e28 L 1.142
7 o 2.537 | 2.165
hebs7 1 3.434
Lle2s | 1a3e
8 2,532 | 2.159
heb50 3.427
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TABLE 3 SATURN V 3 STAGE LAUNCH VEHICLE; DEVIATIONS FROM THE
ORTHOGONALITY CONDITIONS OF THE FIRST THREE NORMALIZED

MODES
o-cxg| _ORDINARY BEAM | TIMOSHENKO BEAM |
& | 1,2 , 3 2,3 1, 2 1,3 2,3
Q .000 049 | .000 374 | -.000 475]| -.000 115 | .000 317 | -.000 411 |
I -.002 579 | .001 566 | -.001 164l{ -.001 908 | .001 083 | -.000 821 |
2 ~.005 155 | .003 154 | -.002 363)| -.003 865 | .002 169 | -.001 639 _
3 |-.007 794 | .o004 756 | -.003 508| -.005 901 | .003 335 | -.002 539
4 -.010 457 | .006 526 | -.004 929| -.007 986 | .004 505 | -.003 436
5 —.013 11 | .008 150 | -.006 167|| -.010 126 | .005 692 | -.00k 34k |
© |_.o15 821 | .009 898 | -.007 594 -.012 343 | .006 962 | -.005 333 |
7 -.018 577 | .011 810 | -.009 059|| -.014 625 | .008 252 | -.006 34k
8 -.021 320 | .013 382 | -.010 215|| -.016 975 | .009 563 | -.007 349
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APPENDIX

REPRESENTATION OF THE INERTIA LOADS REFERRED
TO A BODY-FIXED COORDINATE SYSTEM

The loads acting on the launch vehicle during powered flight consist of the thrust
and the inertia forces of the vehicle masses. To make proper allowance for these loads’
it is necessary to represent them in the body-fixed reference system of coordinates.

The position of the thrust vector, whose amount is known, is at all times determined by
deflection and slope of the vehicle end. To represent the inertia forces, the acceleration
of the vehicle masses must be described in the accelerated, moving, body-fixed coordi-

nate system.

In general, the velocity vector of a point referred to a moving coordinate system

is given by
- -  — — dT
V_V0+w/\r+d—t (A1)
where
Vo is the velocity vector of the origin,
w is the rotation vector of the coordinate system,
T is the location vector of the mentioned point, hence %tz is the relative
velocity vector.
The acceleration of the point T may be expressed by
- — — dv
WLV at (A2)

Without loss of generality, it can be assumed that the plane lateral deformation
of the vehicle axis coincides at all times with the x, y-plane; hence v, and & may be
expressed in the body-fixed system:

v = v (A3)
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el
n
o

-
where w is the angle velocity of the rotating system.

The location vector of any point of the (deformed) vehicle axis is given by:

T= |y (xt) (A3)

Since longitudinal deformations will not be considered, the coordinate x is independent
of time,.

From equations (A1), (A3), (A4), and (A5) the velocity of the point r can be
obtained as:

_ VOi—wy
v = A6
V02+wX+yt ( )

The third vanishing component is omitted in equation (6) and the following equations., The
acceleration of the point T may be concluded from equations (A2), (A3), (A4), (A5),

and (A6) as

- el
a Vi W V" w X -wy 2wyt

a = = N Z 2 )
a Vptwv, -w y+cux+ytt

(A7)

Since motion relative to the coordinate system does not occur, the center of mass
remains at all times on the x-axis having the x-coordinate , and hence

e
]
o
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Therefore, application of (A7) to the center of mass yields:

a - -2
= m v01wv02wn

n a v tw +
n2 Yoz Vo1 n

(A8)

which represents the acceleration vector of the C. M. Then, application of (A7) and
(A8) to the ith lumped-mass of the system shown by Figure 11 yields:

0 wz(xi—n)+a}yi+2w3}_
- . .- ) i (A9)
1 n w (x;-m *y; w®y,

Considering the third equation (9) one may recognize that the third term of (A9)
contains second and third order quantities only, Under the assumption of small oscilla-
tions, this term may be neglected. Now, (A9) can be written

+ - (A10)

The three terms represent acceleration of the C, M., acceleration of the ith mass
because of the vehicle rotation about its C. M. and the relative acceleration of the ith
mass., Consequently, the inertia forces equation (4) acting on the ith yehicle mass

H; , Vi,
(Fig. 11b and 12a) can be expressed by means of equation (A10) as follows:
Vi = —mi [a.,.,2+d: (Xi - 17)]
Q.E.D
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